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For a randomized complete block design with additive block effeécts, X

an asymptotically distribution-free simultaneous confidence region of

pairwise treatment differences is presented. The corresponding confidence

bound has an explicit form and is easily obtained. An example is provided

for illustration purpose. The case of treatment against control is also
discussed,

Key Words and Phrases: Multiple comparisons; aligned observation;

Mann-Whitney two sample statistic.
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1. INTRODUCTION

Suppose that K > 2 treatments are applied once each to n different blocks.

Let X,., be the response of the ith treatment in the jth block

ij
(i=1, ...,K; j=1,...,n). The model often used for this experimental setting is
$ the linear model in which the observations Xij can be written as
(1.1) x1j =u+ai+sj+eij,

K
where the a's are the parameters of interest (treatment effect), z ai =0,
8's are nuisance parameters (block effects) and gj = (elj""’ﬁqj)%:lj=l""’n
are independent and identically distributed random vectors having a continuous
joint distribution function which is symmetric in its K arguments ( This relaxes
the conventional assumption of having independence and identity of distributions
of all the nK error terms.),

Of tentimes a global test for HO: @) S0, = ... =0y is of less interest and
one may feel that the simultaneous inference on the palrwise treatment differences
ap T Oy, 1<i<i'<K is more desirable (c.f. Miller (1966, 1977)). There are several
nonparametric pairwise multiple comparisons procedures available for this case
(c.f. Puri and Sen (1971), Hollander and Wolfe (1973) and Hettmansperger (1975)).
However, they either only utilize the intrablock comparisons and have low
efficiency or involve complicated inversion procedures for obtaining simultaneous
confidence bound of pairwise treatment differences. Although Sen (1969) has pro-

vided a simultaneous confidence bound to a, -~ @ based on two sample Chernoff-

i

Savage rank order statistics, the derivation of his procedure is not obvious

(see Puri and Sen (1971), p. 331), and the bound he obtained is not in an explicit
form so that numerical method is sometimes required.

In this article, we utilize the information contained in interblock comparisons

and provide an asymptotically distribution-free simultaneous confidence region
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of pairwise treatment differences. The corresponding bound has a simple and
explicit form and can be easily obtained. The case of treatment against control

is also discussed. An example 1s presented for illustration purpose in Section 3.

2, ASYMPTOTICALLY DISTRIBUTION-FREE SIMULTANEOUS CONFIDENCE
REGION OF PATRWISE TREATMENT DIFFERENCES

To eliminate the nuisance parameters B's in (1.1), we consider the aligned

observations Y,, = X,, - X j? where X , is a symmetric function of X

15 = Xij 3 1307 ¥y

such that X ,+ a is the same function of X..+a,...,X, .+ a for all -»< a < =,

.3 13 7K
Typical X j are the block average (X j)’ the median of X

ij""’ij’ the Winsorized

or trimmed mean, etc. In this article, we let X j be X P so that Model (1.1)

can be rewritten as Yij =a, + eij (i=1,...,K;j = 1,...,n) ,where eij = eij - e.j

and e is the jth block average of elj""’eKj' It follows from the inter-

’eKJ that the distribution function of €

3

changeability of e

150 lj""’eKj’

j=1l,...,n is symmetric in its K arguments. Let the marginal distribution

function of € j be G.

i
Now, define a scoring function ¢ for comparing Yij and Yi'j' by
1, YiJ > Yi'J'
¢(Yij’ Yi'j') = A
-1, YiJ < Yi'j' .

- i ' ' =
Let p, E¢(Y1j, Yi'j')’ where i#i' and j#j'. Under Ho, Pigr 0. Consider ?

n n 1
= - v :
Uii',n = jil j'il (¢(Yij, Yi'j') pii')’ 1l <1i<i' 5K, which is the usual :

Mann-Whitney two sample statistic (though based on matched samples).

Several lemmas are needed to derive the simultaneous confidence bound to

@ =0 s 1 <1i<1' <K.
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Lemma 1. As n->«, the random vector <n Uiy ‘1/2 > converges in distribution
]

to a K(K-1)/2 dimensional normal random vector with mean Q and covariance matrix t.

(Proof). See Appendix A.

3
n~ /2
ii',n 5 is

Lemma 2. Under HO, the asymptotical covariance structure of < T
R %
_‘r)

2(02

identical to that of the vector having K(K-1)/2 components Zi—Zi', 1<i<i'sK,
1

r 3 2= 2= A
1""’ZK) NK(Q,I ), 1K is the KxK identity matrix, o E(G(Yij)) /3

and t = E(G(Y, ,)G(Y

where (2

)).

ij 1'j

(Proof). See Appendix A.
1 1
Lemma 3. Under HO, /e <1< /3.

1.
‘2
(Proof). Using the fact that ]cov(G(Yij), G(Yi'j))l < (var G(Yij) var G(Yi'j»
= 5&2 , the proof is straightforward.
We remark that the bounds of T in the above Lemma are attainable (c.f.

Hollander, Pledger and Lin (1974), p. 180).

Lemma 4. Under H

2
, lim P(JU,,, _|=< 2q) n LV/E, 1<i<i'<K) 2 1-y, where
0 1o ii',n K

O<y< 1, q} is the 100(1-y) percentage point of the distribution of the range of

K independent unit normal random variables.
(Proof). 1t follows directly from the above lemmas.

Lemma 5. For i<i', suppose that the differences Yij-Yi'j' are distinct,
L} L
Jjs3'=ly4ee.,n. If Dii < 4. < Di:L denote the ordered differences Y, =Y ,.,,
(1) (%) 1y 17
then
i’ non 2
D(l) < O =04 if and only 1if jil j§=1 ¢(Yij—ai, Yi.j,-ui,) < n =20




and

Dil' > if d ly if ; ; (Y, - Y ) 2 2 2m+2
(m) ui-ui, and only 4o1 jie1 ¢ 13 ui, i’j'_ai' n =2mtl.

(Proof). See Appendix A.

Now, we are ready to present a simultaneous confidence bound to
@ =Gy, 1<i<i'sK.

- ii’ ii’ '
Theorem 1. iiz, P(D(l) s a0, < D(m). 1<i<i's<K) 2 1l-y,

o 3 - ) 3
where & = [n /o - qg n /2 //61], m-[nzlz‘kql n b //61 + 2, and [+] is the

greatest integer function.
(Proof). It follows from the above lemmas.

So far we have assumed that there are no tied observations. When there
are ties, Lemma 5 will no longer be valid. TIf in practice the ties are the
result of rounding to the nearest multiple of €, some modifications can be made
to guarantee the validity of Theorem 1. Let the original responses giving rise

L
to the (rounded) observations X,, be X for which Model (1.1) is appropriate,

1j ij
] ] L
€ - -
then lxlj - xij’ S' /o and'henLe IX.j X.jl < ¢,, where X.j 1s the jth
block average of le,.:., ij. It follows thaf ' '
(2.1) ,Yij - Yijl < e, where Y1j = Xij - X-j.
' ! i1 i1’
If the ordered differences Y,, - Y. ,,, are denoted by E ees E ,
13~ 1y 2
() (n)
i1’ i1’
l.emma 5 holds when D replaced by E. However, from (2.1), lD(k) - E(z)l < 2 e,
i11? 11!
Therefore, if it [E(l)’ E(m)) is the 1-y simultaneous confidence region

1 1<i<i'<K
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LD(Q) - 2, D(m)

1<i<i'<K in Theorem 1, then n
1<i<1'<K

of a,-a

{0 + 2e) 1is also

a 1-y simultaneous confidence region of a0

3. AN EXAMPLE

We present a numerical example in this section for illustration purpose.
The data in Appendix B were obtained by Woodward (1970) to compare three methods
of rounding first base to reach the second base. The three methods, "round out",
"narrow angle", and "wide angle” are illustrated in Hollander and Wolfe (1973,
p. 142).

Each entry in Appendix B is an average time of two runs from a point on the
first base line 35 ft. from home plate to a point 15 ft. short of second base.
Here, players are blocks and methods of rounding first base are treatments.

The observations were rounded to the nearest multiple of € = .01, For error
probability vy = .1, we obtain £ = 119 and m = 365 from Theorem 1. It follows

that a 90% simultaneous confidence region of a =G0, 1<i<i'<3 is

12 12
‘D119 = 2&5 Dygs

13 13

23 23
119 ~ 28+ Digs

4+ 2¢) x [{D 119 = 2¢, D365

+ 2¢) x [D + 2¢)

which is (-.07, .09) x [0, .19) x [0, .15).

4. REMARKS
Suppose that Treatment 1 is a control and the rest (K-1) treatments are
under investigation as possible improvements. Then by the same argument as we
gave before for all treatment comparisons, a 1-¥ simultaneous confidence region

of a;=0gs 2<i<K can be obtained as follows.

i1 il
Theorem 2. ii?w P(D(l) < a -0y < D(m), 25i<K) 2 1l-y, where

Y Y 3
g = (nf2-¢ n’2 /Y31, m=1(n 4, + E n /21731 + 2
K-1 K-1

e




Y
and § is the upper Y percentage point of the maximum absolute value of

K-1
(K-1) N(0,1) random variables with common correlation % (c.f. Hollander and

Wolfe (1973), Table A. 14),

APPENDIX A
Proof of Lemma 1. Let ¢0 v (y) = Eo(y, Yio-.) - Py and
ii J
¢l '(y) = E¢(Yij,y) = Pyqre Also, let
ii
0 1
g(Yij’Yi'j') = ¢(Y1j,Yiljl) = pii' = ¢ii'(Yij) - ¢ii| (Yi'j‘) and
x n n
Uii',n = jil (¢iil (Y j) + ¢ i'(Yi' )) =2 JZ (G(Yij—ai') G(Y -a ) pii').
Then
-3 % 2 3 n n n n
(A-1) E(n Uiy o =0 Uggo n) =n L X z Z h{j,i',k,k'),
» ]

j=1 j'=1 k=1 k'=1

where h(j,j',k,k') = ELg(Y i J')g(Yik’ ,k,)J Because g is bounded, we can
3

ignore any u terms of the sum in (A-1) if u is of order o(n ). Consider the

following cases for which the number of terms is with order larger than or equal

3
to 0(n ) (where j,j',k and k' represent four distinct indices):

(1) n(j,3',k,k'") = Eg(Yij’Yi'j') Eg(Yik,Yi'k') =0

(2) h(j,j,k,k') = h(j9j'9k’k) = 0;

(3) h(3,3%5,k") = n(3,3"k,3") = EEl8(Y,, Y\ )8, Y,y ]Y, D)

= E{E[g(Yij’Yilj!)lYij] E [g(Yij’Yi'k')'Yij]} = 0;

(4) h(j,i',k,3) = h(§,3',3',k") = EE[g(Yij’Yi'j')g(Yik’Yi'j )lYij’ij]

= E{E[g(Yij T j.)h']lj 4 j]E[g(Yik,Yi.J)IYij,Yi.j]} = 0.

R W
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3 el
-2 <% -
It follows that E(n Uii',n - n Uii',n) + 0, as n+=, By Corollary 6 of
S %
Lehmann (1975, p. 289) and the fact that the vector <n ¢ Ugyo n/2 > has a
s

K(K-1)/2 dimensional normal limiting distribution N(Q,}), the vector

_ Y.
1 72 U,y /2> has the same normal limiting distribution N(0,}). Q.E.D.

<1 .
ii',n

Proof of Lemma 2. Under the HO: al=a2= ce. = uK, Ylj’ cees YKj are inter-

changeable and have a common continuous marginal distribution function G.

)-G(Y, ,.)), where

A typical element oii',kk' of I is E(G(Yi )'G(Yi,j))(G(Y

3 kJ k'j

i< i' and k < k'. It is easy to show that the covariance matrix § is identical

2 1
to the vector having K(K-1)/2 components (o —t)é(Z ), 1<i<i'<K, where
L}

%

17240

2 2
(Zys oes 29~ NI, 0 = E(C(Y) = Yy and 1 = E(G(Y;)6(¥;y,))+ Q.E.D.

Proof of Lemma 5. The inequality Dii) < a, -4, holds if and only if at least

2 of the differences (Yij-ai) - (Yi,j,—ai.) are less than or equal to zero and
n n

hence % oY, .~a ,—a,,)<:n2—22. The second statement of this lemma
. ’ ij i
=1 j'=l

can be obtained in a similar manner. Q.E.D.

i’ Yi'j
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PENDIX B

Rounding first base times
Methods
Players
Round out Narrow Angle Wide Angle
1 5.40 5.50 5.55
2 5.85 5.70 5.75
3 5.20 5.60 5.50
4 5.55 5.50 5.40
5 5.90 5.85 5.70
6 5.45 5.55 5.60
7 5.40 5.40 5.35
8 5.45 5.50 5.35
9 5.25 5.15 5.00
10 5.85 5.80 5.70
11 5.25 5.20 5.10
12 5.65 5.55 5.45
13 5.60 5.35 5.45
14 5.05 5.00 4.95
15 5.50 5.50 5.40
16 5.45 5.55 5.50
17 5.55 5.55 5.35
18 5.45 5.50 5.55
19 5.50 5.45 5.25
20 5.65 5.60 5.40
21 5.70 5.65 5.55
22 6.30 6.30 6.25
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